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Abstract 

 
A NOVEL NORSPERMIDINE RESPONSIVE SIGNALING  

PATHWAY IN VIBRIO CHOLERAE AFFECTING BIOFILM FORMATION 
 

Steven Randolph Cockerell 
B.S., University of North Carolina Asheville 

M.S., Appalachian State University 
 
 

Chairperson:  Ece Karatan 
 

! Polyamines are ubiquitous molecules characterized by the presence of one or 

more amine groups on a simple carbon chain. As a general class of molecules, 

polyamines are utilized by nearly every living organism. Vibrio cholerae for example is 

capable of producing the polyamines norspermidine and cadaverine. The polyamine 

norspermidine has been shown to be a positive regulator of biofilm formation. This 

positive regulation of biofilm formation was found to be dependent on the presence of the 

proteins MbaA and NspS. When NspS is removed from the cell, there is a decrease in 

biofilm formation suggesting that NspS is a promoter of biofilm formation. Further, NspS 

shows sequence similarity with a polyamine transport protein in V. cholerae and 

preliminary data suggest that it has the capacity to bind polyamines. Strains of V. 

cholerae lacking MbaA, however, show increased biofilm formation suggesting it as a 

repressor of biofilm formation. MbaA has sequence similarity with the GGDEF/EAL 

family of proteins. These proteins function in the production and degradation of the 

bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP).  
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 Given the location of NspS (periplasm) and MbaA (inner membrane) and 

sequence similarity to other proteins, the following model is proposed: Norspermidine 

binds NspS in the periplasm which in turn associates with MbaA and attenuates its 

function, allowing an increase in biofilm formation. To show evidence for this model, the 

binding ability of NspS was assessed by Thermal Shift Assay (TSA). In this experiment, 

addition of norspermidine to pure NspS led to an increase in thermal stability over NspS 

alone. The next goal was to show that MbaA is capable of functioning as a 

phosphodiesterase (PDE). PDE proteins degrade c-di-GMP into phosphoguanylyl- (3'-5')- 

guanosine (pGpG), and that activity can be assessed via in vitro enzymatic assay and 

analysis by High Performance Liquid Chromatography (HPLC). HPLC data showed that 

MbaA functions as a PDE protein. The following study provides evidence for the first 

norspermidine-responsive signaling system that regulates biofilm formation. 
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Introduction 

 
 

 The aquatic microorganism Vibrio cholerae is a human pathogen and the 

causative agent of the disease cholera. Cholera is a devastating diarrheal disease 

primarily affecting countries and communities without sufficient water or sewage 

treatment. The disease cholera is initiated by the ingestion of V. cholerae which then 

colonizes the human gut. There are up to five million cases of cholera reported annually 

with about 100,000 infections resulting in death (1). While cholera is potentially deadly, 

the treatment for cholera is relatively simple and is primarily a matter of replacing lost 

fluids and electrolytes (2). The mechanism of dehydration in cholera is based on the 

presence and action of cholera toxin and toxin co-regulated pilus (TCP). Not all strains of 

V. cholerae produce cholera toxin and TCP, but when the two are present the cells have 

the capacity to cause cholera. Cholera toxin acts by causing an increase in intracellular 

concentrations of cyclic adenosine monophosphate (cAMP) and the over activation of 

Cystic fibrosis transmembrane conductance regulator channels (CFTR) also referred to as 

chloride channels (3, 4). The overactive chloride channels allow large amounts of Cl- and 

other ions out of the cell causing water in the cells to move out into the intestinal lumen. 

This movement of water is the cause of the voluminous diarrhea associated with the 

disease. The characteristic diarrhea also contains large numbers of V. cholerae cells, 

which can then re-enter their natural reservoirs to cause disease. V. cholerae can be 

spread by ingesting tainted water or underprepared and tainted food. 
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 As an aquatic organism, V. cholerae can survive in the environment indefinitely, 

making repeated outbreaks a common occurrence (5). A feature that makes V. cholerae 

so persistent is its ability to form biofilms. A biofilm is a multicellular community of 

bacterial cells that secrete an extracellular matrix of carbohydrates, protein and DNA that 

can protect member cells from environmental stresses like fluctuations in pH, antibiotics 

and host immune response (6, 7). In the environment, V. cholerae forms biofilms on most 

aquatic surfaces, and while V. cholerae cells that are not part of a biofilm can cause 

disease, recent evidence has linked biofilms with hyperinfectivity. An epidemiological 

study in India asked individuals to filter their water using their scarves (sari) folded over 

four times for an effective pore size of 20 µm. The study found that among individuals 

who filtered their water this way there was a 50% decrease in the incidence of V. 

cholerae infections (8). This was interesting as the folded scarves did not form a pore size 

small enough to filter out individual V. cholerae cells, but it was sufficient to filter 

aggregates of the cells. Aggregates of V. cholerae could be comprised of biofilm 

fragments or cells associated with small particles that are commonly chitinous material. 

This suggests indirectly that V. cholerae biofilms are associated with the disease cholera. 

Animal model studies have shown more directly that V. cholerae cells that are in or were 

previously a part of a biofilm were hyperinfectious compared to cells not part of a biofilm 

(9). This implicates the formation of biofilm as being important to the disease cholera and 

thus justifies further study. 

 Biofilm formation in V. cholerae begins with receiving a signal from the 

environment that triggers certain proteins and genes to become active. There are many 

different signals that a cell will react to by forming a biofilm, and while there are 
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commonalities between species each individual species reacts to different stimuli. These 

stimuli can be classified as those having an effect on the establishment of a biofilm or 

those that can affect the growth or dispersal of a biofilm once established. V. cholerae 

can use their flagella to sense a surface, which is an example of mechanical sensing that 

leads to biofilm formation (10). There are also host-derived signals that affect V. cholerae 

biofilm formation such as bile. Exposure of bile has been shown to increase the biofilm 

formation in V. cholerae. This exposure to bile can influence both the initial formation of 

a biofilm or increasing the number of member cells (11, 12). Autoinducer molecules are 

compounds produced and excreted by the cell and are important in quorum sensing. 

When concentrations of autoinducer reach a certain level, the cell can react to the 

molecule as an indication of cell density. Increases in autoinducer concentration have an 

inhibitory effect on V. cholerae biofilm formation (10, 13). Once a signal is received, it 

must be transduced from the cell surface to the cellular machinery responsible for 

changing the cell’s behavior. Once cells are attached to a surface, the biofilm can begin to 

grow and mature by recruiting new cells and by producing an extracellular matrix 

composed mostly of polysaccharide, which surrounds the cells and offers a more stable 

environment. The primary component of V. cholerae biofilms is Vibrio polysaccharide 

(VPS) (14, 15).  

 Two clusters of genes control the production of VPS: vpsA-K and vpsL-Q.  The 

vps genes encode several types of proteins: those that produce VPS, transport VPS or 

regulate the production of VPS. To date, there are four proteins shown directly to be 

capable of regulating expression of vps genes. VpsR and VpsT are both positive 

regulators and HapR and CytR are negative regulators (16-19). The production of VPS is 
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necessary for biofilm formation; therefore, finding signals that affect VPS production is 

important to better understand the biofilm forming process. 

 Signals that can affect biofilm formation are diverse and include a class of simple 

organic molecules called polyamines. Polyamines are a broad class of organic molecules 

characterized by a carbon chain with terminal and/or internal amine groups. Polyamines 

(Figure 1) are nearly ubiquitous in life and are synthesized by most organisms. 

Polyamines play a role in normal cell growth, signaling and gene expression as well as 

modulate several cellular activities by associating with RNA, DNA and proteins (20).  V. 

cholerae has the capacity to synthesize several polyamines, namely, norspermidine, 

putrescine, and cadaverine, and can import spermidine. In V. cholerae, the polyamine 

norspermidine was identified to have a significant effect on biofilm formation (21). 

 
 
Figure 1. The polyamines norspermidine and spermidine. (A) Norspermidine (B) 
Spermidine. Molecular models were sourced from the online database 
http://pubchem.ncbi.nlm.nih.gov/. 
 

Addition of norspermidine to cultures of V. cholerae has been shown to increase 

biofilm formation up to two fold (21). The increase in biofilm formation signaled by 

norspermidine was also found to be dose dependent, with higher concentrations 
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increasing biofilm to a greater degree. Further study of the norspermidine-based biofilm 

response found that the increase in biofilm formation was dependent on two proteins, 

MbaA and NspS. When the nspS gene was deleted from V. cholerae there was a decrease 

in biofilm formation, but not in a norspermidine dependent manner as in wild-type cells. 

This suggests that NspS is an enhancer of biofilm formation and that it is necessary for V. 

cholerae to respond to norspermidine. When mbaA was removed from V. cholerae there 

was an increase in biofilm formation indicating it is a repressor of biofilm formation. 

Also, like the nspS deletion, the mbaA deletion caused an effect on biofilm formation 

independent of norspermidine addition, indicating MbaA is involved in norspermidine 

signaling (21). 

 The genes nspS and mbaA occur on the same operon along with a third gene 

VC0702 and are all co-transcribed (Figure 2) (21, 22). When genes occur on the same 

operon, the encoded proteins are often involved in the same process. The predicted 

location of NspS is the periplasm indicated by the presence of a signal sequence. MbaA is 

predicted to be an integral membrane protein with a periplasmic domain and three 

cytoplasmic domains. Given the putative location of the two proteins and their 

involvement in biofilm formation, it was hypothesized that the two interact. Evidence 

supporting the interaction of NspS and MbaA was provided by research in our lab (23). 

Co-immunoprecipitation experiments showed that NspS and MbaA interact in the cell, 

indicated by formation of a complex containing both of these proteins. 
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Figure 2. Genomic view of nspS and mbaA with the gene VC0702. Arrows depict the 
genes and their orientation on the genome. Arrows also indicate the direction of RNA 
polymerase when transcribing the operon.  
 
 

NspS shares sequence similarity with other periplasmic proteins, specifically 

PotD from Escherichia coli. PotD is a component of the PotABCD transport system, 

which is an ABC type transporter shown to import spermidine in E. coli (24). In V. 

cholerae there is an ABC type transporter homologous to the PotABCD system in E. coli 

(24). The difference between the E. coli and V. cholerae PotABCD systems is that there 

are two homologues of PotD, PotD1 and PotD2. PotD1 in V. cholerae has been shown in 

our lab to be responsible for transporting norspermidine in addition to spermidine (24, 

25). Given the ability of PotD1 to transport norspermidine and the sequence similarity of 

PotD1 and NspS, it is highly likely that NspS is capable of binding norspermidine. 

Further, studies in our lab have shown that NspS is not responsible for norspermidine 

transport. The potD1and nspC genes were removed from V. cholerae producing mutants 

incapable of synthesizing or importing norspermidine. This mutant was unable to import 

exogenous norspermidine, despite the fact that it still contained the nspS gene, indicating 

that NspS could not support norspermidine transport (25).  

 The second protein to be implicated in norspermidine based regulation of biofilm 

is MbaA. MbaA is a hybrid protein consisting of a periplasmic portion, transmembrane 

domain, HAMP domain, GGDEF domain and EAL domain. The periplasmic portion of 

MbaA is the predicted site of a NspS/MbaA interaction that allows norspermidine to 

transduce a signal in V. cholerae. The HAMP domain is commonly associated with 
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signaling proteins especially those with transmembrane domains. The HAMP domain is 

named for being common in several different types of signaling protein: histidine kinases, 

adenylate cyclases, methyl-accepting chemotaxis receptors and phosphatases (26). The 

HAMP domain is more specifically thought to be a linker domain associated with 

environmental signaling, so its presence in MbaA is appropriate for the model proposed 

in this study. The GGDEF and EAL domains of MbaA indicate the possible function of 

MbaA as affecting the intracellular concentration of the bacterial second messenger 

bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP).  

 C-di-GMP regulates phenotypes associated with biofilm formation, motility, 

virulence in pathogenic species, and life-cycle transitions as in Caulobacter crescentus 

(10). The phenotypes regulated by c-di-GMP are triggered by changes in the intracellular 

concentration of the messenger. In V. cholerae and many other bacteria, increased c-di-

GMP concentrations tend to increase biofilm formation whereas low levels of the 

messenger decrease biofilm formation. Changing the concentration of c-di-GMP involves 

synthesizing more of the messenger or degrading it. These activities are accomplished 

through two types of proteins; the diguanylate cyclases (DGC) which synthesize c-di-

GMP from two molecules of GTP and the phosphodiesterases (PDE) which degrade c-di-

GMP to phosphoguanylyl (3’-5’) guanosine (pGpG) (27). DGC proteins are identified by 

the GGDEF amino acid motif and PDE proteins are identified by the EAL motif. GGDEF 

and EAL amino acid motifs characterize the enzymatic domains of DGC and PDE 

proteins, respectively. MbaA contains both a GGDEF and an EAL domain, making it a 

hybrid domain protein, which is common (28). Often, in hybrid domain proteins the 

GGDEF domain is inactive and the EAL domain is active. The GGDEF domain of MbaA 



!8!

contains a substitution of glycine to serine in the GGDEF motif, making it SGDEF. 

Mutation of the glycine residues in GGDEF domains has been shown to result in a loss of 

function (28, 29). The EAL domain, however, has the amino acid motif known to be 

active in other PDE proteins, EVL (30). The alanine to valine substitution is a 

conservative substitution that has been shown to be tolerated and allow for production of 

pGpG. The regulation of intracellular pools of c-di-GMP is the proposed mechanism of 

regulation events involved in biofilm formation in V. cholerae. 

 Based on the observation that MbaA and NspS interact, that NspS putatively 

binds norspermidine and that MbaA may be a functional phosphodiesterase, the 

following model is proposed. NspS detects norspermidine which regulates the interaction 

of NspS and MbaA and this interaction attenuates the PDE activity in MbaA. An 

interaction between MbaA and NspS could then affect cellular behavior by modulating 

intracellular pools of c-di-GMP. As concentrations of norspermidine remain low NspS 

would be unable to attenuate PDE activity in MbaA causing c-di-GMP levels to remain 

high. Further, removal of mbaA confers a consistently elevated level of biofilm formation 

(21). In this case, absence of MbaA allows c-di-GMP pools in the cell to rise and thus 

biofilm formation to increase. The objective of this study was to provide in vitro evidence 

of both norspermidine/NspS binding and MbaA PDE activity. The data obtained supports 

a model of polyamine based signaling, transduced through the bacterial second 

messenger c-di-GMP. This is the first polyamine-based signaling system elucidated to 

date and potentially constitutes a new class of bacterial signaling. 
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Materials and Methods 
 
 

Bacterial strains, media and solutions 

 Bacterial strains used in this study are detailed in Table 1. E. coli strains carrying 

pMAL-c5x or its derivatives were grown in Luria-Bertani (LB) broth (1% tryptone, 0.5% 

yeast extract and 1% NaCl) with 0.2% glucose supplemented with 100 !g/mL ampicillin 

and incubated at 37°C with shaking at 200 rpm. E. coli strains carrying pET28b 

constructs were grown in LB supplemented with 50 !g/mL kanamycin and incubated at 

37°C with shaking at 200 rpm. 

Plasmid constructs 

nspS plasmid 

 The NspS expression plasmid, pET28b::nspS, was constructed previously and the 

pET28b::nspS plasmid was isolated from strain AK223 (31). The nspS fragment carried 

in the pET28b plasmid lacks its signal sequence, which causes the resulting NspS protein 

to remain in the cytoplasm as opposed to being moved to the periplasm. Further, the 

pET28b plasmid encodes a 6-Histidine tag that is added to the end of the protein, which 

can be used in protein purification. The lac promoter on the plasmid allows control over 

expression of the inserted gene by addition of isopropyl !-D-1-thiogalactopyranoside 

(IPTG). This molecule is structurally similar to allolactose and removes repression of the 

lac promoter, allowing transcription of the inserted gene. The plasmid pET28b::nspS was 

transformed directly into the SHuffle® T7 Express from New England Biolabs (Ipswich, 
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MA) chemically competent cells by heat shock. SHuffle™ T7 Express cells were chosen 

because the cells have been optimized for cytoplasmic production of periplasmic 

proteins. 

 
Table 1. Bacterial strains used in this study 
Strain Genotype Source 

Escherichia coli   

DH5"™ F– "80lacZ#M15 #(lacZYA-argF) 
U169 recA1 endA1 hsdR17 (rK–, 
mK+) phoA supE44 $– thi-
1 gyrA96 relA1 

Invitrogen 

NEB Express fhuA2 [lon] ompT gal sulA11 R(mcr-
73::miniTn10--TetS)2 [dcm] R(zgb-
210::Tn10--TetS) endA1 !(mcrC-
mrr)114::IS10 

New England Biolabs 

SHuffle® T7 
Express 

fhuA2 lacZ::T7 gene1 [lon] ompT ahpC 
gal "att::pNEB3-r1-
cDsbC (SpecR, lacIq) #trxB sulA11 
R(mcr-73::miniTn10--TetS)2 
[dcm] R(zgb-210::Tn10 --TetS) endA1 
!gor #(mcrC-mrr)114::IS10 
 

New England Biolabs 

AK223 pET28b plasmid carrying nspS gene 
lacking the signal sequence, Kanr 

(31) 

Vibrio cholerae   

PW249 MO10, clinical isolate of V. cholerae 
O139 from India, Smr 

(32) 

 
 

The genome of SHuffle™ cells includes a gene encoding DsbC, a disulfide bond 

isomerase, as well as deletions of genes encoding cytoplasmic reductases. These 

modifications encourage disulfide bond formation in the cytoplasm, which helps with 
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correct folding of some periplasmic proteins. Cells were recovered for 1 hour in pre-

warmed SOC (2% tryptone, 0.5% yeast extract, .05% NaCl, 2.5 mM KCl, 10 mM MgCl2 

and 20 mM glucose) media at 37°C with shaking at 180 rpm. Cells were then plated on 

LB plates supplemented with 50 !g/mL kanamycin and grown overnight at 37 °C. 

Presence of nspS was confirmed by colony PCR using T7 promoter and T7 terminator 

primers (Table 2). 

 

Table2. Primers used in this study. 

Primer Primer Sequence Description 

PA211 GATAAGCATATGGTGA
TCAATCCGA 

Forward primer for pMAL mbaA insert 

PA212 ACTTGGATCCCTAACGG
CATTCACTTTG 

Reverse primer for pMAL mbaA insert 

PA215 GTGGGCTTCGCAGTATT
GCTGCG 

Forward primer for E553A mutagenesis 

PA216 CGCAGCAATACTGCGA
AGCCCAC 

Reverse primer for E553A mutagenesis 

PA226 GCATCGGTCGACACGG
CATTCACTTTGGC 

Forward primer for pFLAG mbaA insert 

PA227 CAGCGTCTCGAGAAGC
TAAACCATAGAAT 

Reverse primer for pFLAG mbaA insert 

T7 
promoter 

TAATACGACTCACTATA
GGG 

Forward primer for detecting insert in 
pET28b plasmid 

T7 
terminator 

GCTAGTTATTGCTCAGC
GG 

Reverse primer for detecting insert in 
pET28b plasmid 

  

mbaA plasmids 

 In order to express the MbaA protein, a plasmid carrying the mbaA gene was 

constructed. Since MbaA has an N-terminal transmembrane domain, we decided to only 

express the C-terminus of the MbaA protein to avoid complications resulting from 
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solubility issues with membrane proteins. Along with the mbaA fragment encoding the C-

terminus of the protein a point mutant was constructed (MbaA E553A), which had a 

single nucleotide substitution that altered the glutamate at position 553 on the protein to 

an alanine. To assemble the plasmids for expressing the cytoplasmic C-terminal portion 

of the MbaA protein, DNA sequences were PCR amplified using genomic DNA from V. 

cholerae and cloned into an expression plasmid. The expression plasmid used for MbaA 

WT and MbaA E553A expression was pMAL-c5x (New England Biolabs). The pMAL-

c5x plasmid has the nucleotide sequence for maltose binding protein (MBP) 5’ of the 

multiple cloning site. When transcribed, the gene of interest and the MBP gene will form 

one transcript and when translated form a fusion protein. Like pET28b, pMAL-c5x 

utilizes the lac promoter which can be activated by IPTG addition.  

 All of the primers used in this study are in Table 2. Phusion High Fidelity 

polymerase enzyme (New England Biolabs) was used to amplify all mbaA gene 

fragments used in this study. For amplification of the C-terminal mbaA fragment, the 

forward primer PA211 and the reverse primer PA212 were used. The forward primer 

added an NdeI site to the 5’ end of the fragment whereas the reverse primer added a 

BamHI site to the 3’ end. For the C-terminal mbaA fragment, an initial cycle of 98°C for 

10 seconds was followed by annealing for 15 seconds at 56°C and then a 45 second 

extension period at 72°C for 30 cycles with a final extension of 7 minutes at 72°C. The 

nucleotide sequence for MbaA E553A was constructed using Overlap Extension PCR 

(33). Phusion polymerase enzyme (New England Biolabs) was used to first construct the 

“up” and “down” fragments which include the E to A substitution. The “up” fragment 

was constructed using the forward primer PA211 and reverse primer PA216 that coded 
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for the A to C nucleotide substitution. The “down” fragment was constructed using the 

forward primer PA215, which was complementary to PA216, and the reverse primer 

PA212. Thermo cycler settings for the “up” and “down” fragments began with an initial 

denaturation at 98°C for 30 seconds followed by 30 cycles beginning with 98°C for 10 

seconds, 59°C and 62°C for 15 seconds for annealing, extension for 1 minute at 72°C and 

a final extension of 7 minutes at 72°C.  Both the up and down fragments were run on a 

gel, then excised and purified from the gel. The “up” fragment was 853 bp and the 

“down” fragment was 728 bp; these fragments were spliced together in another PCR 

reaction using PA211 and PA212. Thermo cycler settings for this reaction were identical 

to those used in amplifying the nucleotide sequence for MbaA WT. The last PCR 

reaction yielded a 1.5 kbp DNA fragment with a substitution of A to C at 1659 bp from 

the start of mbaA.  

All fragments were first cleaned using the GE Healthcare illustra™ GFX™ PCR 

DNA and Gel Band Purification Kit (Buckinghamshire, UK). The fragments were then 

digested with NdeI and BamHI restriction enzymes for 3 hours at 37°C. After digestion 

the fragments were separated from digested DNA by gel electrophoresis and then gel 

purification using the GE Healthcare illustra™ GFX™ PCR DNA and Gel Band 

Purification Kit (GE). The digested and cleaned fragments were then ligated into pMAL-

c5x which had been digested with BamHI and NdeI. Ligation was carried out at 16°C 

overnight using T4 DNA ligase enzyme (New England Biolabs). After overnight 

incubation, the ligation mixture was dialyzed against water using a Supor® - 100, 0.1 

!m, 25mm membrane filter (Ann Arbor, MI) for 20 minutes. After dialysis, all of the 

ligation reaction was electroporated into NEB express cells, a protein expression strain of 
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Escherichia coli from New England Biolabs. Transformed NEB cells were plated on LB 

plates supplemented with ampicillin (100 !g/mL) and incubated overnight at 37!C. 

Colonies were checked for the presence of the insert in the pMAL-c5x plasmid using 

colony PCR. Cells were transferred from a plate to 100 !L nuclease free water and heated 

to 95 °C for 5 minutes. Lysed cells were centrifuged at 8000 x g for 10 minutes and the 

resulting supernatant was the template for a PCR reaction. OneTaq® (New England 

Biolabs) polymerase enzyme was used to amplify the template in colony PCR reactions. 

The primers PA211 and PA212 were used to detect presence of the mbaA insert and were 

used with the following thermo cycler settings: initial denaturation at 94 °C for 30 

seconds followed by 30 cycles of denaturation at 94 °C for 30 seconds, annealing for 30 

seconds at 56°C, extension at 68 °C for 45 seconds and a final extension at 68 °C for 7 

minutes. Once a colony with the insert was identified, a sample of the plasmid was 

extracted and purified using the Wizard® Plus SV Minipreps DNA Purification System 

(Madison, WI). A sample of the plasmid was submitted for sequencing to the 

Biotechnology Resource Center: DNA Sequencing Facility, at Cornell University (Ithaca, 

NY). Sequencing was used to verify that the fragment had been inserted into the plasmid 

and that the insert was free of errors. 

mbaA in pFLAG-CTC 

 To express the MbaA protein in V. cholerae, the full length mbaA gene was 

amplified for cloning into the pFLAG-CTC™ vector from Sigma-Aldrich (St. Louis, 

MO). The pFLAG-CTC vector adds a FLAG tag to the sequence cloned into it, which 

can be used to detect the protein produced. The full-length mbaA gene fragment was 

amplified using Phusion DNA polymerase. The full-length mbaA fragment was amplified 
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from V. cholerae genomic DNA using primers PA226 and PA227. PCR settings for the 

amplification of the full mbaA were: initial denaturation at 98 °C for 30 seconds, 

followed by 30 cycles of denaturation at 98°C for 30 seconds, annealing at 53°C for 30 

seconds, extension at 72°C for 1.5 minutes and a final extension of 10 minutes at 72°C. 

PCR products was purified using the GE Healthcare illustra™ GFX™ PCR DNA and 

Gel Band Purification Kit (Buckinghamshire, UK). After purification, the PCR fragments 

were digested with XhoI and SalI (New England Biolabs) for 3 hours at 37°C. Two 

separate attempts were made to ligate the full-length mbaA insert into pFLAG-CTC but 

were unsuccessful. 

NspS production and purification 

 SHuffle® T7 Express (New England Biolabs) E. coli were used to express and 

produce NspS protein lacking the signal sequence. NspS cultures (1 L) were grown in LB 

broth at 37°C and shaking at 200 rpm to mid log-phase indicated by an OD655 

measurement of 0.3 - 0.4 as described above. At mid log-phase IPTG (Gold 

Biotechnology, St. Louis, MO) was added to a final concentration of 0.1 mM and cells 

were induced at 30°C overnight with shaking at 200 rpm. After induction, cells were 

harvested by centrifugation at 5,000 x g for 10 minutes and the pellet was resuspended in 

Lysis buffer (50 mM sodium phosphate, 300 mM sodium chloride and 10 mM imidazole, 

pH 7.4). Cell suspension was frozen overnight at -20°C and then thawed in cold water. 

PMSF was added to the cells immediately before lysis to a final concentration of 1 mM. 

After freezing and thawing, the cell suspension was lysed by sonication. Sonication was 

carried out with the cell suspension in ice water for 2 minutes. After sonication, the cell 

debris was separated by centrifugation at 16,000 x g for 20 minutes at 4°C. The 
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supernatant was then added to a separate tube along with 500 !L of prepared HisPur™ 

Cobalt Resin (Thermo Scientific, Rockford, IL). Cobalt resin was prepared by briefly 

spinning at 700 x g and discarding the supernatant. The resin was then washed three 

times with lysis buffer. Cleared lysate was then incubated with cobalt resin overnight 

with gentle rotation at 4°C.  

 After the cobalt resin was allowed to incubate with cell lysate, the solution was 

loaded onto a column and the flowthrough was collected for analysis by SDS-PAGE. The 

NspS-bound resin bed was washed twice The first wash was with 10 mL of the Lysis 

Buffer and the second wash was 3 mL of Wash Buffer (50 mM sodium phosphate, 300 

mM sodium chloride, 20 mM imidazole, pH 8.0). After washing, NspS was eluted from 

the column using a 250 mM imidazole solution (50 mM sodium phosphate, 300 mM 

sodium chloride, 250 mM imidazole, pH 8.0) and collected in 1.5 mL fractions. All 

elution fractions were analyzed by SDS-PAGE before further processing. 

Thermal shift assay 

 To determine the binding ability of NspS to various ligands, a thermal shift assay 

was performed essentially as previously described (34). The Thermal Shift Assay (TSA) 

relies on the principle that a protein bound to a ligand has a higher thermal stability than 

the ligand-free protein. Purified NspS was buffer exchanged into the TSA buffer (150 

mM NaCl, 100 mM HEPES) using a Nanosep 10 kDa Omega centrifugal filter (Pall Life 

Sciences, Ann Arbor, MI). The TSA reaction mixture contained NspS at a concentration 

of 20 !M, spermidine and norspermidine at 100 !M or 1 mM, and SYPRO® Orange 

(Invitrogen) at a 5x concentration. The protein, ligand and dye were combined and 

transferred to an Optical 96-well reaction plate from Applied Biosystems (Grand Island, 
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NY) and covered with an optical adhesive cover from Applied Biosystems. Negative 

controls were contained SYPRO® Orange, assay buffer and polyamines to ensure no 

reactions were occurring between the polyamines and SYPRO® Orange indicator. A well 

with NspS protein, SYPRO® Orange and binding buffer was assembled to determine a 

baseline for the thermal stability of the protein. The experimental tubes were the same as 

the NspS only with the addition of the polyamines norspermidine, spermidine, cadaverine 

or putrescine. The reaction plate was then analyzed in an Applied Biosystems 7300 Real 

Time PCR System (Grand Island, NY). 

 The TSA used the detection filters for the TAMRA dye that can be found in the 

options for the Applied Biosystems 7300 machine. The excitation and absorption spectra 

for TAMRA overlap with the spectra of SYPRO® Orange. The instrument was then set 

to increase the temperature of the wells by 1°C every cycle, starting at 25°C and ending 

at 95°C. The binding assays were performed in triplicate with two biological replicates. 

The data was analyzed in SigmaPlot where the first derivative of the raw fluorescence 

values was taken. The converted fluorescence values were graphed and the graphs were 

used to calculate the average shift in thermal stability of NspS.  

MbaA production and purification 

 NEB express E. coli was used to produce MbaA and E553A. Both MbaA variants 

were purified from cells grown in 1 L of LB + 0.2% glucose supplemented with 100 

!g/mL ampicillin. A single colony was used to inoculate an overnight culture in 25 mL of 

LB + 0.2% glucose supplemented with 100 !g/mL ampicillin. After overnight growth, 1 

L of LB + 0.2% glucose supplemented with 100 !g/mL ampicillin was inoculated with 

10 mL (1% of 1 L volume) of the 25 mL overnight. Cultures were grown at 37°C and 
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shaking at 200 rpm, to mid log phase, indicated by an optical density reading of OD655 ~ 

0.3 - 0.4. Optical density measurements were taken in a Bio-Rad Model 680 microplate 

reader (Hercules, CA) by transferring 150 !L of culture to a microplate and analyzing 

using the 595 nm filter. Once cells were in mid log phase, IPTG was added to a final 

concentration of 0.3 mM and the culture was grown overnight at 30°C with shaking at 

200 rpm. After induction, cells were harvested by centrifugation at 5000 x g for 10 

minutes and resuspended in Column buffer (20 mM Tris, 200 mM NaCl, and 1 mM 

Ethylenediaminetetraacetic acid (EDTA)). Cell suspension was transferred to a 50 mL 

conical tube and was frozen at -20°C overnight. After freezing, the cell suspension was 

thawed by placing the conical tube in cold tap water. Once thawed, 

phenylmethanesulfonylfluoride (PMSF) (Amresco, Solon, OH) was added to a final 

concentration of 1 mM and the cell suspension was lysed by sonication (Heat Systems 

Ultrasonics W-380, Farmingdale, NY). Sonication was performed in ice water for a total 

of 2 minutes. After lysis, the solution was transferred to two 50 mL Nalgene 

centrifugation tubes. Lysis solution was centrifuged at 16,000 x g for 20 minutes at 4°C, 

the supernatant was then split evenly into two separate 15 mL conical tubes. To each of 

the conical tubes containing the cleared cell lysate, 500 !L of prepared amylose column 

resin was added and the volume was raised in each tube to 15 mL. Amylose resin was 

prepared by centrifugation at 700 x g for 30 seconds followed be removal of the 

supernatant. The resin was then washed three times with 1 mL of column buffer.  

 The amylose resin/cell lysate solution was rotated gently at 4°C overnight. After 

incubation of the lysate with the resin, the solution was transferred to a column. The 

flowthrough was collected and saved to be analyzed by SDS-PAGE to evaluate the 



!19!

amount of protein that did not bind to the resin. The MbaA fusion protein bound resin 

was washed on the column with 20 mL of column buffer which was saved for analysis by 

SDS-PAGE. Finally, MbaA fusion protein was eluted from the column using column 

buffer + 10 mM maltose. The elution was collected in 1 mL fractions and analyzed by 

SDS-PAGE before further processing. To prepare the MbaA/MBP fusion protein for use 

in enzymatic assays, the elutions were collected and dialyzed using a 3500 MWCO, 0.5 

mL – 3 mL Slide-A-Lyzer® dialysis cassette from Thermo Scientific (Rockford, IL) 

overnight in a 50 mM Tris solutions pH 8.5. Protein solution was dialyzed against 500 ml 

of buffer for 1 hour at room temperature, then overnight at 4°C after transferring the 

cassette to another 500 mL of fresh buffer. 

Phosphodiesterase assays 

Bis(pNPP) assay 

 Bis(p-nitrophenyl) phosphate is a molecule that has been shown to be able to 

serve as substrate that is available to c-di-GMP PDE proteins. An assay for PDE activity 

using Bis(pNPP) was carried out essentially as previously described (35). After MbaA 

and MbaA E553A production, a buffer exchange into a 50 mM Tris, pH 8.5 solution was 

performed. Buffer exchange involved concentrating the elutions in a Nanosep 10 kDa 

Omega centrifugal filter from Pall Life Sciences (Ann Arbor, MI). After concentration 

Tris buffer was added to the concentrated protein and was centrifuged again. After three 

subsequent concentration and dilutions with the Tris solution, the fusion protein was in 

the correct buffer for the pNPP assay.  For this study 10 !g of fusion protein was used in 

each reaction. To determine the necessity for cations to the function of MbaA: MnCl2, 

MgCl2, and CaCl2 were added to the assay at a final concentration of 2 mM. Further, as 
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Mn2+ will form oxides at pH 8.5, all cations were added at a final concentration of 2 mM 

just prior to the start of the assay. The assay was carried out in triplicate at 37°C for 2.5 

hours. After 2.5 hours, the reaction mixture was transferred to a 96 well microplate and 

analyzed using a microplate reader at 415 nm. Results from the spectrophotometer were 

averaged and the data were analyzed using Microsoft Excel.  

 Three negative controls were performed for the pNPP experiment; they consisted 

of one of the three cations combined with the pNPP substrate and assay buffer and were 

incubated alongside the experimental groups. The values of the negative controls were 

used to adjust the experimental assays that contained MbaA to control for any effect by 

pNPP or cations alone. 

HPLC Assay 

 The HPLC assay conducted was based on a previously described method (36). 

Fusion proteins were purified and dialyzed overnight into 50 mM Tris pH 8.5. The 

reaction mixture consisted of 20 !g (2.5 !M MbaA) total of MBP fusion protein, 100 !M 

nucleotides, 2 mM cations, 50 mM Tris pH 8.5 at a final volume of 100 !L. To determine 

specificity, c-di-GMP and c-di-AMP (BioLog Life Science Institute, Germany) were used 

in separate reactions. All nucleotides were used at a final concentration of 100 !M in the 

reaction mixture. The reactions were incubated for 2.5 hours at 37°C. After incubation, 

reactions were centrifuged through a Nanosep 10 kDa Omega centrifugal filter from Pall 

Life Sciences for 2 minutes at 14000 x g. The reaction products were separated using a 

SUPELCOSIL™ LC-18 column (Sigma-Aldrich, St. Louis, MO) with a Waters 1525 

Binary HPLC pump and analyzed using a Waters 2487 Dual # Absorbance Detector 

(Milford, MA). Each enzymatic reaction had a total volume of 100 !L, which allowed for 
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two 40 !L injections per reaction tube. The identity of the peaks was determined by 

comparison of the reaction products to purified c-di-GMP, pGpG and c-di-AMP 

standards (BioLog Life Science Institute). 

 The MbaA PDE assays were carried out with two technical replicates for each 

biological replicate. MbaA PDE activity was tested in the presence of the same three 

cations listed for the pNPP assays. The HPLC traces were used to quantify the apparent 

activity of MbaA. Extensive analysis of MbaA enzymatic parameters were not evaluated 

due to time constraints and lack of enzyme. Apparent activity was calculated by 

comparing the area under the c-di-GMP standard peaks with the area under the pGpG 

peaks in the experimental runs. That ratio was used to determine roughly the number of 

nanomoles of pGpG produced by MbaA over the 2.5 hour assay. That information was 

then compared to known kcat values in order to compare MbaA activity with other known 

PDE proteins. 
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Results 
 
 

Transformation of pET28b::nspS into Shuffle 

 An expression plasmid of nspS lacking its signal sequence was previously 

constructed (31). The signal sequence was removed so that NspS could be expressed in 

the cytoplasm of the E. coli expression strain. Cytoplasmic production of NspS is likely 

to lead to a greater yield of product than periplasmic preparations. The pET28b::nspS 

plasmid was isolated from E. coli BL21 and transformed into Shuffle® T7 Express 

(Figure 3A).   

 
 
Figure 3. nspS cloning and transformation. (A) The cloning procedure used by Zayner, 
2008 to insert nspS into pET28b lacking its signal sequence. (B) The plasmid containing 
nspS was detected in SHuffle® cells after transformation. Lanes 2, 3 and 5 are positive 
for nspS. 
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SHuffle® T7 Express cells were chosen because they have been optimized for the 

production of periplasmic proteins in the cytoplasm, giving a higher yield of correctly 

folded protein. The plasmid pET28b::nspS was confirmed to be in SHuffle® 

transformants by colony PCR (1 kbp fragment) (Figure 3B) and by sequencing. 

Production of NspS in SHuffle™ 

 In order to determine the ability of NspS to bind norspermidine, pure samples of 

the protein were required. Small scale optimization experiments were conducted to 

determine the ideal conditions for the production of NspS from SHuffle™ cells. The 

optimal induction conditions for production of NspS were 100 µM IPTG for 

approximately 18-20 hours at 30°C (Figure 4). 

 
 

 
Figure 4. Production and purification of protein. Diagram depicting production and 
purification protocol for NspS, MbaA and MbaA E553A. NspS purification is achieved 
through use of a cobalt resin which the 6 histidine tag on NspS has an affinity. For 
MbaA, purification is achieved by selective binding of Maltose Binding Protein to 
amylose immobilized to resin. !
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Further, to increase the amount of protein from each purification experiment, two 1 L 

cultures were grown simultaneously. The protein was affinity purified using a cobalt 

resin which has an affinity for the 6His tag on the NspS protein. The protein could then 

be washed of contaminating proteins and eluted using a solution containing 250 mM 

imidazole, which outcompetes the 6His tagged NspS for binding to the cobalt 

immobilized on the resin. The flowthrough, wash and elutions were collected and 

analyzed by SDS-PAGE before using the protein in any assay (Figure 5). After the 

presence and purification of NspS was determined the protein was dialyzed against the 

TSA buffer. 

 

Figure 5. NspS purification. The dark band in lanes marked 1 and 2 represent the NspS 
protein which has a molecular weight of 41 kDa. The smaller and lighter bands represent 
contaminating protein. Though contamination was present, purity of NspS in this 
preparation was estimated as >90%. FT – flowthrough, W – Wash, E1-E5 – elutions 1 
through 5. 
 

NspS binds norspermidine and spermidine, but not cadaverine or putrescine  

 The periplasmic protein NspS is predicted to bind norspermidine based on 

similarity to other periplasmic polyamine binding proteins and its effect on biofilm 

formation. The ability of NspS to bind norspermidine was evaluated by a Thermal Shift 

Assay (TSA), which operates on the principle that a ligand binding protein will be more 
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thermally stable when bound to its ligand. The TSA was performed using purified 

samples of NspS at a final concentration of 5 µM. TSA experiments were set up with a 

NspS-only control to determine the melting temperature of the protein. The experimental 

wells contained polyamines at 1 mM concentrations (Figure 6). 

 
Figure 6. Thermal Shift Assay of NspS 6His. Thermal Shift Assay presented as the first 
derivative of total fluorescence values. Peaks of the curve represent the point at which 
half of the protein has denatured. (A) Thermal shift assay of NspS 6His with the 
polyamines norspermidine (nspd) and spermidine (spd). (B) Thermal Shift Assay of NspS 
6His with the polyamines putrescine (put) and cadaverine (cad). 
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 There is a pronounced shift in the thermal stability of NspS after the addition of 

both norspermidine and spermidine at concentrations of 1 mM, which indicates a binding 

event. Further, the binding of NspS to polyamines is specific to norspermidine and the 

structurally similar spermidine. The addition of norspermidine and spermidine resulted in 

an average 10°C shift in thermal stability (Figure 7). 

 
Figure 7.  Average shift in thermal stability of NspS 6His. Bars show the average 
temperature (°C) increase in thermal stability of NspS 6His after addition of polyamines. 
Values are calculated using the average thermal stability of NspS without polyamine 
addition. Thermal shift was calculated from the average of three technical replicates. 
 
  Polyamines are a general class of molecules that have a net positive pH at 

physiological pH and all contain amine groups. Given their similar characteristics, a TSA 

was performed to determine NspS binding specificity. Putrescine and cadaverine were 

added to NspS in a TSA (Figure 6B). Addition of either putrescine or cadaverine 

increased the thermal stability of NspS by about 1°C, which is negligible (Figure 7). This 

indicates that there was no binding event and that NspS binding is specific to 

norspermidine and the structurally similar spermidine. 
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Construction of mbaA plasmids 

 In order to determine the phosphodiesterase capacity of MbaA, wildtype and 

mutant mbaA sequences were cloned into an expression plasmid. To prevent 

complications involved in purifying integral membrane proteins, a 1.5 kbp fragment of 

mbaA was amplified from genomic DNA, which has the nucleotide sequence coding for 

the GGDEF and EAL domains C-terminal to the transmembrane domain. 

 
Figure 8. Construction of the mbaA expression plasmid. (A) Diagram of the cloning 
procedure used to synthesize the mbaA and mbaA E553A plasmids in the pMAL-c5x 
system. (B) Colony PCR of mbaA gene inserted into pMAL-c5x, lane 2, with PCR 
amplified mbaA genomic DNA, lane 1. 

 
A fusion protein system was chosen to produce the MbaA protein given the 

potential for increased amounts of soluble protein. The expression plasmid pMAL-c5x 

was used to express mbaA genes in transformed NEB Express E. coli in order to produce 

protein. Two mbaA constructs were produced: mbaA WT (Figure 8) and mbaA E553A 

(Figure 9). The mbaA WT insert was prepared from genomic V. cholerae DNA by PCR 

amplification followed by restriction digest. The mbaA E553A insert was constructed by 

assembling two fragments that were amplified from genomic V. cholerae DNA and 
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contained a single nucleotide substitution. After the construction of mbaA E553A, the 

fragment was inserted into pMAL-c5x and the resultant plasmid transformed into NEB 

express. Presence of the insert was verified by colony PCR amplification of the mbaA 

insert. After colony PCR was successful, plasmids were isolated and sent for sequencing 

to confirm that the nucleotide sequence was correct.  

!
Figure 9. Generation of MbaA E553A mutant. (A) Diagram describing the 
mutagenesis by SOE PCR protocol for constructing the mbaA E553A fragment. (B) 
Agarose gel shows the “up” and “down” fragments amplified from genomic DNA. (C) 
The band at 1.5 kbp depicts successful splicing of “up” and “down” fragments into mbaA 
E553A. 
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Production of MbaA WT and MbaA E553A 

 To analyze the enzymatic ability of MbaA, the mbaA gene cloned into pMAL-c5x 

was used to synthesize protein. Small scale experiments were used to determine the ideal 

expression conditions for MbaA synthesis. A 2 mL culture of NEB Express carrying 

mbaA was induced with IPTG overnight. After induction, the cells were lysed and 

analyzed by SDS-PAGE (Figure 10). 

 
Figure 10. Small scale optimization of MbaA expression. A 2 mL overnight culture of 
NEB Express carrying the mbaA gene was induced overnight to produce protein. “UI” is 
the total cell protein from an uninduced culture and “I” is the total cell protein from the 
induced culture. The induced lane shows a strong band at 100 kDa that is absent from the 
uninduced and is consistent with the size of the MbaA/MBP fusion. 
 

It was found that induction with 300 mM IPTG, overnight and at 30°C would 

produce the most protein. The procedure to produce MbaA protein was essentially 

identical for all MbaA constructs used in the study (Figure 4). Production of MbaA was 

most successful when induced during mid-log phase indicated by an OD655 of 

approximately 0.3. The purification of MbaA fusion protein was accomplished by using 

an amylose resin that has affinity for the MBP affinity partner. The protein could then be 

eluted using a solution of 10 mM maltose which would outcompete amylose for binding 

to MBP. Fractions were collected and analyzed by SDS-PAGE gel stained by Coomassie 
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Brilliant Blue (Figure 11). After gel analysis of the MbaA elution fractions, the protein 

was dialyzed against a 50 mM Tris solution at pH 8.5 overnight using a dialysis cassette. 

 
Figure 11. Representative SDS-PAGE gels of MbaA production experiments. (A) 
MbaA WT production from a 1 L culture. UI is the total cell protein from an uninduced 
culture, FT is the wash from the cobalt resin, W is the wash step in purification process 
and lanes 1-5 show samples from 1.5 mL elutions. (B) SDS-PAGE gel of MbaA E553A 
production experiment with lanes 1-5 showing the elution fraction from 5 samples. Both 
gels show MbaA protein at a molecular weight of 100 kDa. 
 
MbaA is a Phosphodiesterase  

pNPP 

 The first phosphodiesterase assay used in this study was performed using the 

reagent pNPP (Figure 12). This molecule has a phosphodiester bond available for 

cleavage by a phosphodiesterase and results in a color change detectable at 415 nm. This 
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assay has been used to successfully identify other PDE proteins. It was found that MbaA 

WT produced a yellow color in the pNPP assay which indicates that MbaA WT is a 

phosphodiesterase (Figure 13A). As part of the pNPP assay, 3 cationic cofactors were 

added to the assay one at a time, to determine their impact on activity. Mn2+, Mg2+ and 

Ca2+ were added to the reaction in the form of MnCl2, MgCl2 and CaCl2. It was found 

that MnCl2 addition resulted in the strongest formation of yellow color and thus a higher 

absorption at 415 nm. The salts MgCl2 and CaCl2 did not produce a yellow color in the 

reaction after incubation indicating that they either inhibit the reaction or simply do not 

affect it.  

 
Figure 12. Bis(p-nitrophenyl) phosphate. Molecule figure was sourced from 
Sigma Aldrich. 

  

 The pNPP assay was also used to analyze MbaA E553A using the same 

concentrations of the substrate and addition of the same cationic cofactors. When MbaA 

E553A was combined with MnCl2, a yellow color developed to a similar degree as MbaA 

WT (Figure 13B). This was unexpected as the substitution of glutamic acid at position 

553 with alanine should be a loss of function mutation as indicated in other 

phosphodiesterase studies. It is possible that the phosphodiesterase ability of MbaA is 

disrupted by the mutation but only in the degradation of a phosphodiester bond in c-di-

GMP.  
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Figure 13. pNPP assay of MbaA and MbaA E553A. pNPP phosphodiesterase assay. 
Columns represent the absorbance of the samples at 415 nm. The samples develop a 
yellow color when the enzyme present is has the ability to cleave a phosphodiester bond 
in pNPP. (A) MbaA WT protein incubated with pNPP for 2.5 hours at 37°C. (B) MbaA 
E553A incubated with pNPP for 2.5 hours at 37 °C. Reactions were adjusted for 
background signal from pNPP + ion controls run along-side experimental groups. 
 
HPLC 

 The pNPP assay uses a mimic for c-di-GMP; therefore, in an effort to provide 

more convincing results that MbaA is a phosphodiesterase, a second assay was 

performed. For the second MbaA phosphodiesterase assay, a pure sample of c-di-GMP 
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was used as the substrate. MbaA and c-di-GMP were combined with one of four cations 

and allowed to react for 2.5 hours at 37°C. The reaction products were then separated by 

HPLC, and the traces were compared with c-di-GMP and pGpG standards to identify 

peaks. The HPLC traces show that MbaA is a c-di-GMP phosphodiesterase (Figure 14). 

From the HPLC traces it was possible to calculate the amount of pGpG produced by 

MbaA during the incubation step. The area under the peaks in the HPLC trace can be 

used to quantify the amount of whatever has eluted. The area under the c-di-GMP 

standard peaks corresponding to 100 %M or 4 nanomoles per reaction was compared to 

the area under the pGpG peaks. There was an average of 0.38 nanomoles of pGpG 

produced over the 2.5 hour period by 10 µg of MbaA fusion protein. 

 

  
Figure 14. HPLC analysis of PDE assay. HPLC trace of MbaA WT PDE assay with 
MnCl2 as the cationic cofactor. C-di-GMP and pGpG peaks were identified by running 
pure samples of each in a separate run. MbaA was added for a final total of 10 %g per 
reaction and c-di-GMP at 100 %M. 
 

The same assay was used to evaluate the enzymatic capacity of the mutant MbaA 

E553A. In this assay, MnCl2 was used as the cationic cofactor since it was this cofactor 

that gave a positive result in the pNPP assay. It was found that MbaA E553A was 

incapable of degrading c-di-GMP to pGpG (Figure 15). 
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Figure 15. Phosphodiesterase assay evaluating MbaA E553A. 10 %g MbaA E553A 
was incubated with MnCl2 and 100 %M c-di-GMP and allowed to react for 2.5 hours at 
37°C. The resultant peak was identified by running a purified sample of c-di-GMP in a 
different run. 
 
MbaA PDE activity requires cationic cofactors 

 Phosphodiesterase proteins require a cationic cofactor for proper functioning and 

can be negatively impacted by other cations. Typically, either Mg2+ or Mn2+ are required 

for proper functioning of a PDE where Zn2+ and Ca2+ will inhibit PDE activity (37). 

MbaA WT was placed in the same PDE assay described above only MgCl2, CaCl2, or 

ZnCl2 were added in place of MnCl2. In each case, no c-di-GMP PDE activity was found 

(Figure 16). This shows that the PDE activity of MbaA requires Mn2+ and that none of 

the other cations added allow phosphodiesterase activity over a 2.5 hour period. 

MbaA PDE activity is specific to c-di-GMP 

 There are several cyclic nucleotides that are present in bacterial cells and so there 

is the possibility that MbaA will degrade several different molecules and not necessarily 

just c-di-GMP. To verify that MbaA PDE activity was specific for c-di-GMP, a 

phosphodiesterase assay was performed with c-di-AMP as a substrate and MnCl2 as the 

cationic cofactor. When the reaction products were separated by HPLC no peaks, aside 

from the c-di-AMP peak, were identified (Figure 17). This shows that MbaA is not 

capable of degrading c-di-AMP and is likely only active against c-di-GMP. 
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Figure 16. HPLC traces of MbaA WT with varying cationic cofactors. All PDE 
assays used MbaA at 10 %g in the reaction and c-di-GMP at 100 %M. C-di-GMP was 
identified by running a pure sample. (A) MbaA WT with MgCl2 as the cationic cofactor. 
(B) MbaA WT with CaCl2 as the cationic cofactor. (C) MbaA WT with ZnCl2 as the 
cationic cofactor. 
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Figure 17. MbaA WT phosphodiesterase assay with c-di-AMP. 10 µg MbaA WT was 
incubated with 2 mM MnCl2 and 100 µM c-di-AMP for 2.5 hours at 37°C. C-di-AMP 
was identified by running a standard during another run. 
 
  

 
Figure 18. pFLAG-ctc cloning. (A) Proposed cloning strategy for pFLAG-ctc plasmids 
carrying mbaA (2 kbp) and mbaA E553A (2kbp). (B) Agarose gel of mbaA amplification 
from genomic DNA. Fragment is 2 kbp and is comprised of the entire mbaA gene 
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Construction of a V. cholerae-compatible expression plasmid for mbaA 

 The phosphodiesterase MbaA has the ability to degrade c-di-GMP which should 

have an effect on biofilm development in V. cholerae.  To determine the effect of MbaA 

and MbaA E553A on biofilm development, two plasmid constructs should be 

synthesized. The genes for mbaA and the relevant mutants were amplified and digested 

for insertion into pFLAG-ctc (Figure 18). The cloning of mbaA into pFLAG-ctc was not 

successful due to complications in achieving complete digestion. The pFLAG-ctc 

plasmid attaches a FLAG tag to the gene inserted into the multiple cloning site. The 

pFLAG::mbaA construct would be transformed into V. cholerae lacking a chromosomal 

copy of mbaA. 
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Discussion 

 
 

 The periplasmic protein NspS was found to be capable of binding the polyamine 

norspermidine. Binding was assessed by a Thermal Shift Assay (TSA), which is based on 

the principle that ligand binding proteins should be more thermally stable when bound to 

their ligand. NspS alone was found to have a thermal stability of 45°C. The thermal 

stability reported is the temperature at which half of the protein has denatured or the rate 

of change in fluorescence is at its maximum. When norspermidine was added to a 

purified sample of NspS and subjected to the same gradual increase in temperature, the 

protein had a thermal stability of 55°C. This increase in thermal stability is indicative of a 

binding event between NspS and norspermidine, its predicted ligand. Addition of 

spermidine to purified samples of NspS also showed a 10°C shift in the thermal stability 

of NspS indicating spermidine binding. In an effort to show that binding to NspS was 

specific, the polyamines putrescine and cadaverine were added to purified samples of 

NspS. The thermal stability of NspS with added cadaverine or putrescine was 

approximately 46°C, which is a negligible difference compared to NspS alone indicating 

there was not a binding event. These data show that NspS is capable of binding 

norspermidine and spermidine, providing a mechanism for V. cholerae to detect those 

polyamines.  

 Previous experiments in our lab have shown that addition of spermidine to V. 

cholerae cultures inhibits biofilm formation in a NspS-dependent manner (24). 
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Spermidine is structurally very similar to norspermidine so it is not surprising that 

spermidine might bind NspS. What is unexpected is that there is a pronounced 

phenotypic difference in the effect of spermidine and norspermidine on biofilms. The 

TSA used in this study to show binding of protein to its ligand does not provide a Kd 

value so it is difficult to see if spermidine or norspermidine bind more tightly to NspS. It 

is evident, however, that they both stabilize NspS to a similar degree; therefore, the 

binding affinity to NspS for the two polyamines are likely to be comparable. This is the 

first step in the model for norspermidine regulation of biofilms in V. cholerae. The next 

goal of this study was to provide evidence that MbaA degrades the second messenger c-

di-GMP.  

 The current study has shown that MbaA has the ability to act as a c-di-GMP 

specific phosphodiesterase. Two separate assays showed that not only is MbaA capable 

of degrading phosphodiester bonds but that it degrades the phosphodiester bonds in c-di-

GMP specifically. The first assay was based on the degradation of the substrate pNPP. 

This assay showed that MbaA is an active phosphodiesterase and that Mn2+ was required 

as a cationic cofactor. This assay was also used to evaluate the E553A mutant that should 

not have phosphodiesterase activity. The pNPP assay showed that when MbaA E553A 

was combined with pNPP and MnCl2 at 37°C for 2.5 hours a yellow color developed. 

This was unexpected, as the E to A substitution in E553A should have resulted in a loss 

of function. It also raised a lot of questions since the publication that was the source of 

this method also assayed an E to A mutation protein and found a loss of activity (38). 

This, however, does not rule out that the glutamate at position 553 is required for the 

enzymatic degradation of c-di-GMP. It is possible that the mutation of the glutamate to 
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alanine removed phosphodiesterase activity against c-di-GMP but not phosphodiester 

bonds in other molecules. 

  The second phosphodiesterase assay involved incubating a purified sample of 

MbaA and c-di-GMP again with MnCl2 as the source of Mn2+. This reaction was filtered 

and the reaction products were separated by HPLC. This assay showed again that MbaA 

was a functional phosphodiesterase indicated by the production of a pGpG peak after 

incubation of the protein with c-di-GMP. The second phosphodiesterase assay also 

showed that MbaA E553A is not an active phosphodiesterase of c-di-GMP. After a 2.5 

hour incubation of MbaA E553A with c-di-GMP and MnCl2, no pGpG was detected 

during HPLC separation. These data confirm that the glutamic acid residue at position 

553 of MbaA is required for enzymatic degradation of c-di-GMP and that MbaA behaves 

similarly to other phosphodiesterases. 

 Cationic cofactors are necessary for the function phosphodiesterases. In the 

literature, four cations are mentioned and used in studies of phosphodiesterases: Mn2+, 

Mg2+, Ca2+ and Zn2+ (37, 39). The cations associated with catalyzing phosphodiesterase 

activity are Mn2+ and Mg+ while the cations that inhibit activity are Ca2+ and Zn2+. The 

pNPP assay described was performed prior to the HPLC phosphodiesterase assay and 

was used to determine that Mn2+ was the preferred cofactor. When the cations Mg2+, Ca2+ 

and Zn2+ were added to phosphodiesterase assays there was no detectable production of 

pGpG indicating that their presence was not sufficient for MbaA activity. This is 

consistent with published literature on phosphodiesterases. 

Since the protein used in the phosphodiesterase assays was a fusion protein of 

maltose binding protein and MbaA, the kcat of the reaction was not calculated. However, 
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it is possible to compare the apparent activity of MbaA to other phosphodiesterases. The 

phosphodiesterase RocR from Pseudomonas aeruginosa has a kcat of 0.67 s- (40). This 

value means that RocR produces one molecule of pGpG approximately every two 

seconds. We did not calculate the kcat of MbaA but we do know that there was on average 

0.38 nanomoles of pGpG produced by MbaA over 2.5 hours. This equates to an average 

of 2.29E14 molecules of pGpG produced during the reaction by a total of 4.82E14 

molecules of MbaA. Over the course of 2.5 hours then, MbaA is producing on average, 

0.47 molecules of pGpG per molecule of MbaA per second. The kcat of RocR is slightly 

higher, but the apparent activity of MbaA seems to be comparable to that enzyme. The 

reported activity of MbaA has a large amount of variation that makes absolute 

quantification of its enzymatic capacity difficult. This discrepancy between replicates 

could be a result of using an MbaA/MBP fusion protein in the PDE assays. Since PDE 

proteins are predicted to act as homodimers, it is possible that the MBP fusion partner is 

interfering with that dimerization in an unpredictable fashion. Even though MbaA PDE 

activity may not be as robust as a fusion protein it was shown to have the ability to 

degrade c-di-GMP. This information then supports the norspermidine based biofilm 

signaling model proposed earlier. 

 It is clear that there is a signaling cascade in V. cholerae that responds to 

norspermidine and affects biofilm development. Further, it is clear that NspS and MbaA 

are both involved in that signaling at least in part by their interaction as well as the 

binding capacity of NspS and PDE activity of MbaA. This study did, however, reveal a 

point that must be addressed. The periplasmic binding protein NspS was found to bind 

spermidine in addition to norspermidine. As stated earlier, spermidine has the inverse 
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effect on biofilm formation as norspermidine so additional study is required to evaluate 

that interaction. I hypothesize that spermidine somehow blocks the inhibitory function of 

NspS on MbaA. This lack of attenuation could be through an inhibition of NspS/MbaA 

interaction with NspS is bound to spermidine or a change in the conformation that allows 

binding but no effect on MbaA activity. 

A NspS/MbaA like signaling system could represent a new class of environmental 

signal transduction in bacteria. This new class of signaling system would be comprised of 

a periplasmic signaling protein and a membrane bound interacting partner that degrades 

c-di-GMP. Bioinformatic analysis shows that nspS and mbaA like genes are not found in 

all Vibrio species. For example, nspS and mbaA are absent from Vibrio vulnificus and 

Vibrio fisheri. Further bioinformatic analysis shows that nspS and mbaA like genes are 

found together in species distantly related to V. cholerae (Figure 19) (22, 23). When 

nspS-and mbaA-like genes are found in these other species they are not located in the 

same genomic context. This could suggest that mbaA and nspS like genes function 

together and could be found in disparate species due potentially to horizontal gene 

transfer. If the presence of nspS and mbaA in multiple species is the result of horizontal 

gene transfer then the question arises of how the organisms the genes are found are 

connected. An example of a complication of showing gene transfer is that nspS and mbaA 

genes are found in V. cholerae an aquatic pathogen and Psychromonas ingrahmii first 

isolated from polar ice. nspS and mbaA are found together in several species, suggesting 

that the two are acting together potentially in a similar manner to those in V. cholerae. 

We have shown that NspS and MbaA function together in V. cholerae and that homologs 

of the genes coding for NspS and MbaA are found in several disparate species. This 
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indicates that a NspS and MbaA like signaling system could be prevalent in bacteria but 

several questions remain. 

 
Figure 19. Genomic position of nspS and mbaA like genes in disparate species.  
The figure depicts the genomic position based on bioinformatic analysis of nspS and 
mbaA homologs in several species distantly related to V. cholerae. The light and dark 
grey arrows show the position and orientation of nspS, mbaA and their homologs on the 
chromosome. Black arrows are genes found surrounding nspS and mbaA like sequences. 
Black arrows also indicate genes that do not have homologs in the other genome regions 
presented. There is no conserved synteny in any of the genomic regions in this figure 
indicating that the genomic region depicted is different for every species. 
 

 
The protein NspS was shown to have the ability to bind norspermidine and 

spermidine. Further, previous research from our lab has shown that spermidine and 

norspermidine have inverse effects on biofilm formation. The binding data obtained in 

this study are not capable of contributing to the calculation of the binding affinity for 

NspS and its ligands. To better understand the interaction of NspS and its ligands then, 

analysis by Isothermal Titration Calorimetry is recommended (ITC). A better 

understanding of how tightly NspS binds either norspermidine or spermidine could 

indicate which ligand binds more strongly for example. Knowing the binding affinity of 
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spermidine, understanding the interaction of MbaA and NspS is necessary to make any 

conclusions. To better analyze NspS/MbaA binding, a series of co-immunoprecipitation 

experiments with varying concentrations of polyamines would determine the effect of 

interaction. Lastly, MbaA has been confirmed as a phosphodiesterase indicated by the 

production of a pGpG peak after incubation with c-di-GMP. Phosphodiesterase proteins 

are often characterized by their reaction rate or kcat. This information allows 

phosphodiesterase proteins to be compared and could give insight into the polyamine 

signaling complex. With the wide range of pGpG production observed in the PDE assay 

experiments a pure sample of MbaA lacking the MBP fusion partner will be necessary.  

Once the MbaA construct is free of the fusion partner, the same PDE assay should be 

performed and analyzed at different time points with varying concentrations of c-di-

GMP. 

 This study provides data for the first norspermidine-based signaling system in 

bacteria as well as the potential for a new model of environmental signal detection and 

response. In bacteria, especially in c-di-GMP based signal transduction, there is little 

knowledge of specific signal inputs. Therefore the information presented here is 

significant in providing evidence for a novel signaling system complete with identity of 

the environmental input and a clear phenotypic response.  
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